Connect with us

Technology

Visualizing the Critical Metals in a Smartphone

Published

on

Subscribe to the Elements free mailing list for more like this

A Breakdown of the Critical Metals in a Smartphone

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

Visualizing the Critical Metals in a Smartphone

In an increasingly connected world, smartphones have become an inseparable part of our lives.

Over 60% of the world’s population owns a mobile phone and smartphone adoption continues to rise in developing countries around the world.

While each brand has its own mix of components, whether it’s a Samsung or an iPhone, most smartphones can carry roughly 80% of the stable elements on the periodic table.

But some of the vital metals to build these devices are considered at risk due to geological scarcity, geopolitical issues, and other factors.

Smartphone PartCritical Metal
Touch Screen indium
Displaylanthanum; gadolinium; praseodymium; europium; terbium; dysprosium
Electronicsnickel, gallium, tantalum
Casingnickel, magnesium
Battery lithium, nickel, cobalt
Microphone, speakers, vibration unit nickel, praseodymium, neodymium, gadolinium, terbium, dysprosium

What’s in Your Pocket?

This infographic based on data from the University of Birmingham details all the critical metals that you carry in your pocket with your smartphone.

1. Touch Screen

Screens are made up of multiple layers of glass and plastic, coated with a conductor material called indium which is highly conductive and transparent.

Indium responds when contacted by another electrical conductor, like our fingers.

When we touch the screen, an electric circuit is completed where the finger makes contact with the screen, changing the electrical charge at this location. The device registers this electrical charge as a “touch event”, then prompting a response.

2. Display

Smartphones screens display images on a liquid crystal display (LCD). Just like in most TVs and computer monitors, a phone LCD uses an electrical current to adjust the color of each pixel.

Several rare earth elements are used to produce the colors on screen.

3. Electronics

Smartphones employ multiple antenna systems, such as Bluetooth, GPS, and WiFi.

The distance between these antenna systems is usually small making it extremely difficult to achieve flawless performance. Capacitors made of the rare, hard, blue-gray metal tantalum are used for filtering and frequency tuning.

Nickel is also used in capacitors and in mobile phone electrical connections. Another silvery metal, gallium, is used in semiconductors.

4. Microphone, Speakers, Vibration Unit

Nickel is used in the microphone diaphragm (that vibrates in response to sound waves).

Alloys containing rare earths neodymium, praseodymium and gadolinium are used in the magnets contained in the speaker and microphone. Neodymium, terbium and dysprosium are also used in the vibration unit.

5. Casing

There are many materials used to make phone cases, such as plastic, aluminum, carbon fiber, and even gold. Commonly, the cases have nickel to reduce electromagnetic interference (EMI) and magnesium alloys for EMI shielding.

6. Battery

Unless you bought your smartphone a decade ago, your device most likely carries a lithium-ion battery, which is charged and discharged by lithium ions moving between the negative (anode) and positive (cathode) electrodes.

What’s Next?

Smartphones will naturally evolve as consumers look for ever-more useful features. Foldable phones, 5G technology with higher download speeds, and extra cameras are just a few of the changes expected.

As technology continues to improve, so will the demand for the metals necessary for the next generation of smartphones.

This post was originally featured on Elements

Click for Comments

Technology

Charting the Next Generation of Internet

In this graphic, Visual Capitalist has partnered with MSCI to explore the potential of satellite internet as the next generation of internet innovation.

Published

on

Teaser image of a bubble chart showing the large addressable market of satellite internet.

Published

on

The following content is sponsored by MSCI

Could Tomorrow’s Internet be Streamed from Space?

In 2023, 2.6 billion people could not access the internet. Today, companies worldwide are looking to innovative technology to ensure more people are online at the speed of today’s technology. 

Could satellite internet provide the solution?  

In collaboration with MSCI, we embarked on a journey to explore whether tomorrow’s internet could be streamed from space. 

Satellite Internet’s Potential Customer Base

Millions of people live in rural communities or mobile homes, and many spend much of their lives at sea or have no fixed abode. So, they cannot access the internet simply because the technology is unavailable. 

Satellite internet gives these communities access to the internet without requiring a fixed location. Consequently, the volume of people who could get online using satellite internet is significant:

AreaPotential Subscribers
Households Without Internet Access600,000,000
RVs 11,000,000
Recreational Boats8,500,000
Ships100,000
Commercial Aircraft25,000

Advances in Satellite Technology

Satellite internet is not a new concept. However, it has only recently been that roadblocks around cost and long turnaround times have been overcome.

NASA’s space shuttle, until it was retired in 2011, was the only reusable means of transporting crew and cargo into orbit. It cost over $1.5 billion and took an average of 252 days to launch and refurbish. 

In stark contrast, SpaceX’s Falcon 9 can now launch objects into orbit and maintain them at a fraction of the time and cost, less than 1% of the space shuttle’s cost.

Average Rocket Turnaround TimeAverage Launch/Refurbishment Cost
Falcon 9*21 days< $1,000,000
Space Shuttle252 days$1,500,000,000 (approximately)

Satellites are now deployed 300 miles in low Earth orbit (LEO) rather than 22,000 miles above Earth in Geostationary Orbit (GEO), previously the typical satellite deployment altitude.

What this means for the consumer is that satellite internet streamed from LEO has a latency of 40 ms, which is an optimal internet connection. Especially when compared to the 700 ms stream latency experienced with satellite internet streamed from GEO. 

What Would it Take to Build a Satellite Internet?

SpaceX, the private company that operates Starlink, currently has 4,500 satellites. However, the company believes it will require 10 times this number to provide comprehensive satellite internet coverage.

Charting the number of active satellites reveals that, despite the increasing number of active satellites, many more must be launched to create a comprehensive satellite internet. 

YearNumber of Active Satellites
20226,905
20214,800
20203,256
20192,272
20182,027
20171,778
20161,462
20151,364
20141,262
20131,187

Next-Generation Internet Innovation

Innovation is at the heart of the internet’s next generation, and the MSCI Next Generation Innovation Index exposes investors to companies that can take advantage of potentially disruptive technologies like satellite internet. 

You can gain exposure to companies advancing access to the internet with four indexes: 

  • MSCI ACWI IMI Next Generation Internet Innovation Index
  • MSCI World IMI Next Generation Internet Innovation 30 Index
  • MSCI China All Shares IMI Next Generation Internet Innovation Index
  • MSCI China A Onshore IMI Next Generation Internet Innovation Index

MSCI thematic indexes are objective, rules-based, and regularly updated to focus on specific emerging trends that could evolve.

Visual Capitalist Logo

Click here to explore the MSCI thematic indexes

You may also like

Visualizing Asia's Water Dilemma

Subscribe

Continue Reading
Appian-Capital

Subscribe

Popular